sábado, 27 de febrero de 2016

MÉTODOS CUANTITATIVOS PARA LA GESTIÓN (2)

Decisiones sobre la mezcla de productos mediante la programación lineal: Método gráfico

En el agrupamiento de la línea de productos se deben adoptar decisiones para seleccionar la mezcla de productos que se generará (o cuáles procesos se usarán) en función del costo, la capacidad y otras limitaciones. La programación lineal es una técnica muy útil para apoyar el proceso de decisión sobre la mezcla de productos (y otras muchas).

Se aplica a situaciones en las que la empresa tiene una demanda de cualesquier cantidad de dos o más productos que debe producir. Otra aplicación usual es la selección de la mezcla más barata de materias primas o procesos que se aplicará cuando se pueda escoger entre varios de ellos.

La programación lineal es una técnica matemática útil para aprovechar al máximo o reducir al mínimo posible una función lineal objetiva, sujeta a restricciones lineales. Supone que los valores de costos e ingresos son conocidos (certidumbre) y que las utilidades de varias actividades son aditivas (aditividad) y que no se tienen valores negativos de producción (no negatividad).

Se revisará la programación lineal en el caso de una decisión de mezcla de productos; sin embargo tiene una amplia aplicación a otros problemas, tales como presupuestos de capital, balanceo de líneas de producción, planeación y programación.

Los problemas de programación lineal son expresados en términos de una sola función objetivo lineal que especifica el beneficio o costo asociado, con cada variable de decisión.

Por ejemplo: si la utilidad (Z) de una variable de decisión X1 (sillas) es $20 y de X2 (mesas) es $70, la función objetivo lineal puede ser:

Maximizar Z = $20X1 + $70X2

Las restricciones expresan las limitaciones de recursos o necesidades de fabricar productos finales y deben poder ser establecidas como menor o igual que (≤), igual que (=), o mayor o igual que (≥) una cantidad específica.

Es decir, si cada silla (X1) es armada en 10 minutos, y cada mesa (X2) requiere 20 minutos, el número de sillas y mesas que puedan ser armadas estará limitado por el tiempo total de montaje disponible, por ejemplo: 420 minutos.

La ecuación lineal para restringir el tiempo de ensamble puede ser, entonces:
10X1 + 20 X2 ≤ 420

Otras restricciones (tantas como se apliquen) pueden ser formuladas en una forma similar. Tomándolas juntas, las restricciones definen una región factible, un área dentro de la cual se encuentran todas las posibles combinaciones de solución.

La solución óptima (o mezcla de variables) depende de los criterios –por ejemplo: beneficio o costo) expresados en la función objetivo, pero siempre será en algún punto de intersección de las restricciones (una esquina) en la región factible.

Uno de los métodos más fáciles de solución de problemas de dos variables (dos productos) es el método gráfico.

Método gráfico de solución de problemas de programación lineal
<![if !supportLists]>1.      <![endif]>Formúlese el problema en términos de una función objetivo lineal y restricciones lineales.
<![if !supportLists]>2.      <![endif]>Elabórese una gráfica con una variable de decisión en cada eje, y grafíquense las restricciones. Ellas definen la región factible.
<![if !supportLists]>3.      <![endif]>Determínese la pendiente de la función objetivo, e indíquese la pendiente en la región factible de la gráfica.
<![if !supportLists]>4.      <![endif]>Trasládese la función objetivo paralela en dirección de la optimización, hasta que esté restringida.
<![if !supportLists]>5.      <![endif]>Léanse los valores solución de las variables de decisión de los ejes respectivos.


Ejemplo:
Una empresa química "Chemical" produce limpiadores para automóviles X y pulidores Y y gana $10 en cada lote de X, y $30 en Y. Ambos productos requieren procesarse en las mismas máquinas, A y B, pero X requiere cuatro horas en A y ocho en B, mientras que Y requiere seis horas en A y cuatro en B.  Durante la semana entrante las máquinas A y B tienen 12 y 16 horas de capacidad disponible, respectivamente. Suponiendo que existe demanda de ambos productos, cuántos lotes de cada uno deben producirse para alcanzar la unidad óptima Z?.

1. La función objetivo es:
Max Z = $10X + $30Y

Las restricciones son:
A : 4X + 6Y = 12
B : 8X + 4Y =16
X,Y ≥ 0

2. Las variables son X y Y. Las restricciones son dibujadas como igualdades. Para graficar:

Puntos
X
Y
A
X = 0
Y = 2
X = 3
Y = 0
B
X = 0
Y = 4
X = 2
Y = 0

Nótese que la gráfica establece una región factible limitada por las restricciones explícitas de A y B y las restricciones implícitas de que la producción de X ≥ 0 y la producción de Y ≥ 0.

<![if !vml]><![endif]>


3. La función objetivo es la pendiente

Z = 10X + 30Y

La forma estándar de la pendiente de una ecuación lineal es

Y = mX + b

m es la pendiente de la línea (esto es, cambio en Y por cambio unitario en X) y b es la intersección de Y. Expresando la función objetivo en esta forma, se tiene:

<![if !vml]><![endif]>

<![if !vml]><![endif]>

La pendiente = -1/3; es decir, la línea disminuye una unidad en X por cada tres unidades positivas de X. Esto puede graficarse en forma identificable dentro de la región factible (como se muestra en las líneas punteadas de la gráfica anterior. De Y =1 y X=3

4. La pendiente de la función objetivo es trasladada del origen hasta la intersección más lejana de las restricciones  A y la restricción implícita X ≥ 0. La solución óptima estará siempre en una esquina de la región factible.

5. Las flecha apuntan la solución, la cual es determinada por las coordenadas de X y Y en la esquina. En el ejemplo, X=0 y Y=2. O sea la empresa debe producir dos lotes de pulidor y ningún limpiador para obtener una utilidad de

Z = $10(0) + $30(2) = $60

Cómo se puede observar en la gráfica, la restricción impuesta por la máquina B (esto es
8X + 4Y ≤ 16) no tiene efecto, por lo cual las 12 horas de la máquina A (denotada por
4X + 6Y ≤ 12) ) son las que restringen la producción del pulidor más rentable.

La gráfica también muestra que la utilidad podría continuar incrementándose si hubiera más horas disponibles en la máquina A, al punto de doblar la producción (en X=0 y Y=4). En este punto, el tiempo disponible de la máquina B se vuelve restrictivo.

El ejemplo presupone que la contribución a la utilidad era conocida y que las cantidades de las restricciones, tiempo de procesado, y tiempo disponible de las máquinas eran conocidas con certeza.

Bibliografía
Monks Joseph G. ADMINISTRACIÓN DE OPERACIONES, SERIE SCHAUM., Primera edición, México D.F., Mc. Graw Hill., p.p. 103 – 104.
Taha Hamdy. INVESTIGACIÓN DE OPERACIONES. Séptima edición, México D.F., Prentice Hall. p.p 11- 28




Avast logo
El software de antivirus Avast ha analizado este correo electrónico en busca de virus.
www.avast.com

domingo, 14 de febrero de 2016

Robots y productividad

Nota publicada en el suplemento IEco de Clarían el pasado 20 de diciembre de 2015

Productividad: ¿dónde están los robots?

primer nivelLa paradoja de estos días es que las nuevas tecnologías no están mejorando ni un milímetro la productividad. Una postura muy arraigada entre los historiadores de la economía es que los efectos de mejora en la productividad que tienen las nuevas tecnologías tardan en llegar. De hecho, cada vez que hay una gran innovación tecnológica, su efecto inmediato es reducir, no aumentar, la productividad. Pero en estos casos, la tasa de empleo siempre aumentaba, observa el autor. Esto no está sucediendo en la actualidad.
  • Barry Eichengreen Economista, Univ. De Berkeley

Las tendencias recientes en materia de crecimiento de la productividad hacen difícil ser optimista acerca del futuro. En 2014, el crecimiento mundial de la productividad total de los factores, o PTF, que mide la productividad combinada de capital y trabajo, fue prácticamente cero por tercer año consecutivo. Fue inferior al 1% registrado en 1996- 2006 y al 0,5% de los años de la crisis de 2007-2012. Y todo indica que 2015 no fue menos desalentador. En Estados Unidos, datos corregidos que fueron difundidos a comienzos de diciembre revelan que la productividad aumentó sólo un 0,6% internanual en el tercer trimestre.
Si la tasa de crecimiento subyacente de la PTF cayó, de hecho, de su histórico 1,5% anual a casi cero en países como Estados Unidos, los niveles de vida de los adultos jóvenes de hoy subirán mucho más despacio que los de sus padres. Cualquier aumento dependerá totalmente de las mejoras en la educación y la formación, ausentes en los datos, y en la inversión en equipos y estructuras, que es baja respecto de los niveles históricos.
Economistas como Robert Gordon, de Northwestern University, sostienen que esta contracción del crecimiento de la productividad refleja el estancamiento de la tecnología. Gordon dice que ya se han hecho todos los grandes avances históricos, desde el agua corriente y la electricidad hasta la combustión interna y los motores a reacción. En comparación, el efecto positivo de la mensajería instantánea y del videojuego en la productividad y en los niveles de vida resulta insignificante.
Para muchos –especialmente para quienes vivimos cerca de Silicon Valley– esta conclusión sonará inverosímil. Vemos a nuestro alrededor avances espectaculares en robótica, inteligencia artificial, biotecnología, materiales.
Una postura muy arraigada entre los historiadores de la economía es que los efectos de mejora en la productividad que tienen las nuevas tecnologías tardan en llegar. Por cierto, cada vez que hay una gran innovación tecnológica, su efecto inmediato es reducir, no aumentar, la productividad. La electricidad, la nueva tecnología estudiada por el eminente historiador de economía Paul David, de Stanford University, es un clásico ejemplo de esto.
Como lo explica David, antes de que los motores eléctricos fuesen instalados en las fábricas, las máquinas eran ubicadas en torno a motores de vapor centralizados, a los que se conectaban mediante correas y poleas. Los motores eléctricos autónomos hicieron que las máquinas, sus operarios y las actividades pudiesen ser reorganizados de maneras más eficientes.
Pero esta reorganización llevó tiempo. Mientras tanto, los modos de producción establecidos se “disrumpieron”–utilizando el lenguaje de las escuelas de negocios del siglo XXI–, lo que provocó la caída de la productividad. Pero esta caída fue, en realidad, un presagio de tiempos mejores.
Otro destacado economista, Lawrence Summers, de Harvard, alegó que esta historia es incompatible con una segunda tendencia reciente: el empleo decreciente en hombres de 25 a 54 años. Si la productividad ha caído en forma transitoria porque todo el mundo está trabajando arduamente en el siglo XXI en el equivalente a reorganizar la disposición de la planta, la tasa de empleo debería aumentar, no bajar, ya que las empresas siguen operando su “maquinaria de vapor” al mismo tiempo que agregan nueva “capacidad eléctrica”. El empleo de los hombres de edad intermedia debería aumentar, no disminuir. Pero esto sucederá sólo si las tecnologías del siglo XXI requieren cantidades significativas de mano de obra para desarrollarlas e instalarlas, en comparación con los puestos de trabajo que perjudican y eliminan. Este no es el caso, obviamente.
Mi ejemplo favorito son las historias clínicas electrónicas (mi mujer es médica), que tienen un enorme potencial para mejorar la eficiencia en la atención de la salud. Aún hoy, casi toda la información sobre asistencia médica se transmite entre clínicas y hospitales por fax o por teléfono. Cuesta imaginar un sistema menos eficiente, que no sea tratar de coordinar el cuidado del paciente del modo tradicional mientras se aborda la transición hacia la conservación de historias clínicas en soporte electrónico. Diversos hospitales y clínicas están instalando sistemas que son incompatibles e incapaces de comunicarse entre sí.
A la larga, los médicos recordarán todo esto como una experimentación saludable. Pero por ahora se están tirando de los pelos. Dedican menos atención a los pacientes y más tiempo a incorporar datos en sus laptops que no aportan nada, hoy por hoy, a su productividad.
Además, la cantidad de personas que trabajan en el desarrollo de sistemas médicos electrónicos es pequeña en relación con el número de profesionales médicos que sufren las consecuencias de esta imperfecta tecnología de transición. De hecho, la cantidad de esos desarrolladores posiblemente sea aun menor que la de los profesionales médicos que desistieron, frustrados por no haber podido prestar la atención a sus pacientes acorde a su nivel de formación. Con gusto remitiré a aquellos que buscan más información a una médica que ya no ejerce por lo dicho anteriormente: mi mujer.
(c) Project Syndicate